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Abstract

A team of experts assemble a graphical belief network from many small pieces.
This paper catalogs the types of knowledge that comprise a graphical belief network
and proposes a way in which they can be stored in libraries. This promotes reuse
of model components both within the team and between projects.

1 Introduction.

Graphical belief networks (Bayesian networks, influence diagrams, graphical belief models)
have become a popular method for representing uncertain knowledge (Almond, 1990;
Heckerman, 1991; Henrion, Breese, and Horvitz, 1991; Howard and Matheson, 1984;
Pearl, 1988; Shachter, 1986; Shafer and Shenoy, 1988). Their attractiveness stems from
the fact that they combine an easy to understand graphical notation with a rigorous
computational model.

In our own work, we often encounter situations where modeling involves several people.
Imagine, for example, that we are trying to model the system reliability of a complex
machine. One engineer, the overall designer, might put together the overall structure of
the model. A second engineer, a reliability expert, might determine what the failure states
of the various components are and how they propagate. A third engineer, an expert in
purchasing, might develop the models for individual component reliability, and so forth.
The effectiveness of such a team will hinge on the quality of their communication. Of
particular importance is the degree to which the components they are developing can be
clearly described and easily shared among team members.
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If the results of modeling efforts could be catalogued, others could build upon previous
work, rather than starting from scratch. For example, the same component might appear
many times in the completed system, and the model for its reliability can be reused.
Or else the same combination of components (say a valve/actuator pair) may be used
repeatedly, in each case replicating the same model fragment. Later, a different team
may want to use the same components for a slightly different problem. To make this
possible, they need a means to discover and exploit similarity among components in the
graphical model.

The importance of effective sharing and reuse of model components has become even
more apparent in light of recent developments in automated probabilistic and decision
model construction systems (Bradshawet al., 1992a; Bradshaw et al.1991; Holtzman, 1989,
Wellman, Breese and Goldman, 1991; Edgar, Puerta and Musen, 1992). In such systems,
knowledge-based systems guide the configuration of situation-specific belief and decision
models with components selected from an electronic library.

Although this paper concentrates on the problem of sharing and classifying knowledge
within groups, there is an equally large an important problem of sharing knowledge be-
tween groups. Here the lack of standardization in terminology (just look at the number
of synonyms for “graphical model”) hinders the efforts of research groups from various
schools to share examples and methods. Although this paper was derived from the design
of a single system (Graphical-Belief, Almond, 1992b), a useful ontology for graphical
belief networks will only be achieved by collaboration among many scientists involved in
similar efforts.

To build and use libraries of resuable model components, we need at least three things:
(1) a rigorous specification of the kinds of components such a library must contain—
an ontology for graphical belief networks,—(2) a rich description of model components,
and (3) a formalism to describe how components may be combined. Sections 2 and 3
briefly describe the first two elements of our approach.

2 An ontology for graphical belief networks.

A number of authors have argued the benefits for making conceptual commitments ex-
plicit in the form of ontologies (Bradshaw, et al., 1992b; Gruber, 1991; Gruber, 1992b;
Neches et al., 1991; Skuce and Monarch, 1990). The term ontology is borrowed from
the philosophical literature where it describes a theory of what exists. Such an account
would typically include terms and definitions only for the very basic necessary categories
of existence. However, the common usage of ontology in the knowledge sharing and reuse
community is as a vocabulary of representational terms and their definitions at any level
of generality. A knowledge-based system’s ontology defines what exists for the program:
in other words, what can be represented by it.

In this section, we discuss preliminary results in our efforts to define an ontology for
graphical belief models. In Section 4 we describe some of the mechanisms we are exploring
for exchanging these ontologies in computer interpretable form with other groups.



2.1 The central role of valuations.

The central theme of all graphical models is that the variables are represented by nodes
connected by edges, which in some sense represent relationships between them. In
Bayesian networks (Pearl, 1988), the edges are directed, and the relationships are condi-
tional probability functions. In influence diagrams (Howard and Matheson, 1984), a value
variable with utility to the decision maker is designated and compute so as to maximize
is expected value. In graphical belief models (Almond, 1990, Dempster and Kong, 1988),
the graph is a hypergraph and the “hyperedges” correspond directly to component belief
functions.

Note that the graphical model provides a visual description of the structure of a math-
ematical model. Separation in the graph implies statistical independence (Pearl, 1988).
The graph also implies a factorization of the model into distinct relationships (usually
associated with edges). There is a close association between the independence conditions
and the factorization, and under certain circumstances they are equivalent (Kong, 1988).
As for the purposes of model construction the factorization is more important that the
independence (indeed, for belief function models independence does not always imply
factorization), we will leave aside issues of independence here.

To capture these diverse relationships in a single notation, Shenoy and Shafer(1990)
introduce the term valuation. A valuation is defined over a set of variables called a frame.
It maps sets of outcomes in that frame to values. We will define valuations and frames
more formally below, but for now, we can consider them to be the generalization of the
familiar probability relationship to include variations on the theme, such as utilities and
belief functions.

Shenoy and Shafer define a set of operations, in particular, combination and projec-
tions , on valuations. Combination is the ability to combine two valuations defined over
the same frame, for example by multiplying probability potentials together. Projection is
the ability to change the frame (set of variables over which the valuation is defined) to a
larger or smaller set; the most familiar example of this operation is the marginalization
of probability distributions. Together with a theorem which allows limited commuta-
tivity of projection and combination, these operations can be used as the basis of local
computation techniques.

Furthermore, the valuations define the graphical structure of the problem. Because for
all graphical models there is one-to-one correspondence between the graphical structure
and the factorization of the problem into valuations of appropriate types, the set of valu-
ations must define the graphical model. Each valuation has an associated small fragment
of graphical structure—the connection between the variables over which the valuation is
defined. For example a valuation representing “If X and Y then (with probability φ) Z”
would be represented by a directed edges from X and Y to Z or by undirected edges
linking X, Y and Z. These fragments are assembled to form the full graphical model,
although it is often more useful to run the association the other way, first defining the
graphical structure and then defining the corresponding relationships (valuations).

Although it is easy to see how to assemble many valuations into graphs, one can also
subdivide the valuations which describe the relationship structure into components. The
frames of variables over which valuations are defined is worthy of further explanation,
as are the variables themselves. Also, it is useful to partition the set of outcomes into



groupings reflecting natural symmetry in the relationship. Finally, uncertainty about
values can be represented by parameters with their own distributions. These substructures
within a valuation are described below.

2.2 Variables and frames.

The place to start in defining a complex problem is with the variables or variables of the
problem domain. Each variable has a set of outcomes which define the values it can take
on. For example, a binary variable might be associated with the outcome set {0, 1} or
{True, False}.

There is a one-to-one correspondence between the variables of a problem domain and
the nodes in the graphical model, although the node may have some additional information
attached (such as the location, or the list of neighbors).

The domain of a valuation is a set of tuples over an ordered set of variables. We
will refer to that domain as the frame of discernment or frame. There three differ-
ent representations of the frame: (1) the frame of variables or list of variables, (2) the
frame vector or tuple of outcome spaces associated with the variables, and (3) the frame
set or set of possible tuples of outcomes, the cross product of the outcomes sets in the
frame vector. For example, for three binary variables, the frame of variables might be
(X,Y, Z), the frame vector would be ({0, 1}, {0, 1}, {0, 1}) and the frame set would be
{(0, 0, 0), (0, 0, 1), . . . , (1, 1, 1)}. The term frame is used when the distinction between the
three views of the frame is unimportant.

If a valuation is defined over a given frame, one can think of marginalizing it to a
smaller frame, or extending it to a larger frame. Extension can be defined very naturally
for belief functions, but also can be done for probability potentials by replicating over
the appropriate variables. Projecting a valuation onto a new frame is achieved by a
combination of marginalization and extension.

2.3 Groups, groupings and partitions.

It is often useful to think of partitioning the frame set (the set of outcomes) into a number
of groups. For example, one could partition a frame defined over two variables X and
Y into those in which X = Y and those in which that relationship does not hold. As
another example, consider a system S with n identical components C1, . . . , Cn in parallel.
One might be interested in the probability of system failure, given that 0, 1, 2, . . . , n of
the components have failed. Thus there is a natural partition of the conditional part of
the frame into sets representing k-out-of-n failures for k = 0, . . . , n.

The noisy-or model (Pearl, 1988) is a simple form of this partitioning idea. Let
X1, . . . , Xn be a collection of binary input variables and Y be an output variable. Rather
than specify a complete probability distribution for Y for each configuration of the n
input variables, Pearl advocates assessing the conditional probability when two groups
of input configurations: one in which at least one of the inputs has occurred and one in
which none have occurred. Note that we do not need to restrict ourselves to “ors” and
“ands”; any logical grouping of the attributes which we believe to be equivalent can be
used.



We will formally define a group of outcomes as a set of outcomes about which we share
a common pool of information. For example, the outcomes corresponding to the system
with exactly k-out-of-n failures and where X = Y both form a group of outcomes. Note
that there is an implied frame associated with each group.

A set of groups over a particular frame is a grouping . Note that groups in a grouping
need not be disjoint, nor need they span the entire frame set. Groupings are meant to
reflect logical divisions of the valuation domain, and need not be true partitions.

An important subset of groupings is the partition. The groups in a partition must
be pairwise disjoint and must span the entire outcome space. Partitions are particularly
important, because probability valuations correspond to value assignments over partitions,
as do simple utility valuations.

2.4 Formal definition of valuations.

We define a valuation as a mapping from a grouping over a particular frame to numeric
values . In analogy with belief functions, the groups in the grouping are called focal
elements . Perhaps the most obvious example of this is the mass function of a belief
function. However, if the grouping over which the valuation is defined is a partition,
then we can define a probability distribution as well. Recall the probability functions and
belief functions are subclasses of valuations as they imply certain normalization constraints
among the values.

An important subclass of valuations are those for which the grouping over which they
are defined forms a partition. These valuations can be represented by an array of values,
one element of that array corresponding to each tuple in the frame set. Such an array is
called a potential which can be used to represent probabilities and utilities. The class of
valuations which are defined over partitions and hence can be represented with potentials
are called simple valuations . Valuations which are not simple must be represented by a
more complex scheme, such as an association list between groups and values or an array
indexed by subsets of the frame set (superpotentials).

Users of simple valuations, that is people who restrict their modelling effort to proba-
bilities or probabilities and utilities, may not see the necessity of first defining a grouping,
but may rather prefer to go directly to the array of values corresponding to the primitive
tuples. This strategy, however, can quickly get out of hand for large problems, such a the
system with many components. Pearl(1988) introduces the noisy-or model (see previous
section) to address these situations. Identifying a grouping which reduces the effective do-
main of the valuation from the frame set to the set of groups could drastically reduce the
number of values which must be specified. For example, in representing the knowledge “If
X and Y hold then Z usually holds.” we may only be concerned about assigning values
to the two groupings which correspond to whether or not the rule holds. Furthermore,
there is often uncertainty about the values (see Section 2.5), but usually not about the
structure of the grouping.

Another important subclass of valuations are the conditional valuations. These valu-
ations divide the frame variables into two groups, the conditions and the consequences.
The value is thought to be a conditional value associated with the consequence group
given the condition group, for example, a conditional probability of the consequence set
given the condition set. Conditional valuations are usually represented by directed edges,



where unconditional valuations are usually represented by undirected edges. Conditional
valuations can come in both simple (maps to array) and complex varieties.

2.5 Parameters and laws.

Often there will be uncertainty about the numeric values of a valuation, that is an un-
certainty about the strength of the relationship, but not the structure. Furthermore, the
same numeric value, representing the same fragment of knowledge may appear in many
valuations. In order to be able to trace and revise that knowledge, as well as express
uncertainty about it, we must define an indirect pointer to the numeric values.

A parameter is just such a pointer to a numeric value. It is used as an alternative to
the actual number in order to express uncertainty about the numeric value and promote
re-use. As an example of both, the failure probability of a particular valve may be
expressed as a parameter. Any place the valve is placed in the model, the same value
for its failure probability should be used. If the valve is a new component, about which
very little information is known, information about its failure rate may be uncertain or
imprecise (or both). As test of the valve and other experience about it become available,
the information will become more certain and precise, and the value of all parameters for
that valve should be adjusted accordingly.

In order to express uncertainty about the value of parameters, parameters are allowed
to have laws . These are probability distributions over the space of possible values for the
parameters. Because some parameters are functionally linked (for example, the proba-
bility of A and not A), generally speaking the parameters will be dependent. In certain
cases, it may be possible to make reasonable independence assumptions about some of
the parameters.

Note that the term law is reserved for probability distributions over parameters, the
term valuation is used for probability functions over variables. Parameters (in the statis-
tical sense) of laws over parameters are called hyperparameters ; this usage is consistent
with the standard usage in Bayesian statistics. Distributions for hyperparameters are
conceivable but hopefully unnecessary.

Spiegelhalter and Lauritzen(1990) use parameters to define a layered graphical model.
The upper quantitative layer contains the distribution over the parameters, and the lower
qualitative layer contains the graphical structure of the problem and the structure (group-
ings) within valuations. To answer questions in the qualitative layer, the best (average)
values of the parameters are disseminated into the lower layer (in other words, each pa-
rameter is assigned a numeric value, the mean of its distribution). The now parameter free
valuations are propagated through the graphical structure to answer questions. Finally,
data from the consultation, can be used to update the distributions of the parameters in
a Bayesian fashion. Almond(1990) uses a similar device, sampling from the distributions
of the parameters to capture uncertainty about the parameters in the final estimation.

3 Model component libraries.

We now turn from the structure within valuations to the structure of many valuations.
This is the graph of the graphical model. The strength of graphical modelling lies in the



independence assumptions represented by separation in the graph, which in turn imply
a factorization of the problem into component valuations. This in turn implies that an
entire graphical model could be constructed by “dragging and dropping” a collection of
valuations from a library into the model. This approach suggest how a design engineer
might build a model from the work of a reliability engineer (the library designer); here the
selection and placement is accomplished by a drag and drop interface. It is also a good
model for how knowledge based model construction might work; here the selection and
placement are accomplished by meta-rules which determine which knowledge is applicable
when.

It is also possible to group the graphical structure into larger fragments. For example
a subsystem might be a graph fragment which is repeated several times in the system.
Modellers can obviously take advantage of such parallelism to reduce the modelling ef-
fort. Similarly, an intelligent program can take advantage of these symmetries to reduce
computational cost.

Such a graph fragment, because of its portable nature, must be slightly different from
a graph object. In particular, it will be necessary to duplicate the nodes (variables) in
the graph fragment before adding it into the graph. Furthermore, there may be stub-
nodes in the fragment which are meant to determine where the fragment will attach to
other fragments already placed in the graph. Such stub-nodes will be resolved at model
construction time.

Almond(1992a) has implemented a prototype library system that assists users in find-
ing and reusing model components. Reusable model components in the library are pack-
aged as books . A book consists of its contents—the associated model fragment;—it is
labeled with a title—a brief description of the contents—and a set of authors—a list of
contributors, allowing one to trace the sources of knowledge used in its construction—and
wrapped in a jacket—a more thorough and detailed description of its function.

Users explore the contents of a library by means of two graphical interfaces: the book
editor (Figure 1) and the bookcase browser (Figure 2). Figure 1 shows a book editor
for a fragment of a graphical model. The display allows the user to examine the title,
authors and jacket. The actual contents can be optionally examined for a more precise
and detailed picture.

The bookcase browser presents a list of books by titles and allows the user to select or
to open a book editor for any of them. If no appropriate book is found, a new one can be
created from scratch or by editing an existing book. Ideally, the bookcase browser should
be augmented by tools which would the list of books to be filtered via selection criteria
(like electronic searching systems in libraries).

4 Conclusions and future directions.

The rate of progress in ontological issues will be largely determined by how well knowledge
can be shared among those in the graphical belief networks community. Results of such
analyses are currently shared very little, and where sharing takes place, it is usually either
a) in the form of paper reports that take time to distribute and get outdated rapidly,
or b) among scientists using some specific piece of not-widely-distributed or supported
software. To facilitate development of ontologies it will be necessary for determine how



Title: Isolation Valve Pressure

Author: (Fuel-Systems-Group ALMOND)

Jacket:

Replace Save New Revert OK Use CloseRead Only Show Contents

Content:

Actuator
Fails

Valve
stuck closed

Value output
< 1100 psia

Value input
< 1100 psia

Valve
Rupture

Fault tree fragment showing  conditions leading to  isolation valve pressure less than 
1100 psi.

Figure 1: Book Editor for Graph Fragment
The book editor allows the user to inspect the title, author, jacket—detailed description
of model fragment—and optionally the contents.

diverse software tools can exchange model fragments in computer-interpretable form.
Gruber’s work on Ontolingua (Gruber, 1992a; Gruber, 1992b) currently provides the

most promising mechanism for sharing ontologies between different tools and formalisms.
Ontolingua extends the knowledge interchange format (KIF; Genesereth and Fikes, 1992)
defined by the DARPA knowledge sharing effort with standard primitives for defining
classes and relationships, and organizing knowledge in object-centered hierarchies with in-
heritance. Ontolingua facilitates the translation of KIF-level sentences to and from forms
that can be used by various knowledge representation systems. Bradshaw et al.(1992b)
and Lethbridge and Skuce (1992) describe the effort to integrate Ontolingua with other
knowledge engineering tools.
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